Peer-reviewed papers

  1. Marrufo-Perez MI, Eustaquio-Martin A, Lopez-Poveda EA. (2018) Adaptation to noise in human speech recognition unrelated to the medial olivocochlear reflex. Journal of Neuroscience.
  2. Lopez-Poveda EA, Eustaquio-Martin A. (2018) Objective speech transmission improvements with a binaural cochlear implant sound-coding strategy inspired by the contralateral medial olivocochlear reflex. Journal of the Acoustical Society of America 143(4):2217-2231.
  3. Lopez-Poveda EA (2018) Olivocochlear efferents in animals and humans: From anatomy to clinical relevance. Frontiers in Neurology 9:197.
  4. Lopez-Poveda EA, Johannesen PT, Pérez-González P, Blanco JL, Kalluri S, Edwards B. (2017). Predictors of hearing aid outcomes. Trends Hear 21:1-28.
  5. Lopez-Poveda EA, Eustaquio-Martin, A, Stohl JS, Wolford RD, Schatzer R, Gorospe JM, Santa Cruz Ruiz S, Benito F, Wilson BS (2017). Intelligibility in speech maskers with a binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. Hearing Research 348:134-137.
  6. Johannesen PT, Pérez-González P, Kalluri S, Blanco JL, Lopez-Poveda EA. (2016). The influence of cochlear mechanical dysfunction, temporal processing deficits, and age on the intelligibility of audible speech in noise by hearing-impaired listeners. Trends in Hearing 20:1-14. doi: 10.1177/2331216516641055
  7. Lopez-Poveda EA, Eustaquio-Martin, A, Stohl JS, Wolford RD, Schatzer R, Wilson BS. (2016). A binaural clochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. Ear and Hearing 37(3): e138-e148. doi: 10.1097/AUD.0000000000000273
  8. Lopez-Poveda EA, Eustaquio-Martin, A, Stohl JS, Wolford RD, Schatzer R, Wilson BS. (2016). Roles of the contralateral efferent reflex in hearing demonstrated with cochlear implants. Adv. Exp. Med. Biol. 894:105-114. doi: 10.1007/978-3-319-25474-6_12
  9. Marmel F, Rodríguez-Mendoza MA, Lopez-Poveda EA (2015). Stochastic undersampling steepens auditory threshold/duration functions: Implications for understanding auditory deafferentation and aging. Frontiers in Aging Neuroscience, 7:63.
  10. Aguilar E, Johannesen PT and Lopez-Poveda EA (2015). Contralateral efferent suppression of human hearing sensitivity. Front. Syst. Neurosci. 8:251.
  11. Pérez-González P, Johannesen PT, Lopez-Poveda EA. (2014). Forward-masking recovery and the assumptions of the temporal masking curve method of inferring cochlear compression. Trends in Hearing. 19:1-14 
  12. Lopez-Poveda EA (2014). Why do I hear but not understand? Stochastic undersampling as a model of degraded neural encoding of speech. Front. Neurosci. 8:348. doi: 10.3389/fnins.2014.00348
  13. Johannesen PT, Pérez-González P, Lopez-Poveda EA. (2014). Across-frequency behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss. Front Neurosci. 8:214.
  14. Alves-Pinto A, Palmer AR, Lopez-Poveda EA. (2014). Perception and coding of high-frequency spectral notches: potential implications for sound localization. Front Neurosci. 8:112.
  15. Lopez-Poveda EA, Aguilar E, Johannesen PT, Eustaquio-Martin A. (2013). Contralateral efferent regulation of human cochlear tuning: Behavioural observations and computer simulations. Adv Exp Med Biol. 787:47-54. doi: 10.1007/978-1-4614-1590-9_6.
  16. Lopez-Poveda EA, Barrios P. (2013). Perception of stochastically undersampled sound waveforms: A model of auditory deafferentation. Frontiers in Neuroscience 7:124. doi: 10.3389/fnins.2013.00124.
  17. Lopez-Poveda EA, Eustaquio-Martín A. (2013). On the controversy about the sharpness of human cochlear tuning. J. Assoc. Res. Otolaryngol. 14(5):673-686.
  18. Lopez-Poveda EA (2013) Cochlear Inner Hair Cell, Model. In: Jaeger D., Jung R. (Ed.) Encyclopedia of Computational Neuroscience: SpringerReference (www.springerreference.com). Springer-Verlag Berlin Heidelberg, 2013. DOI: 10.1007/SpringerReference_348492 2013-03-13 10:03:10 UTC  
  19. Aguilar E, Eustaquio-Martin A, Lopez-Poveda EA (2013). Contralateral efferent reflex effects on threshold and supra-threshold psychoacoustical tuning curves at low and high frequencies. J. Assoc. Res. Otolaryngol. 14(3):341-57.
  20. Lopez-Poveda EA, Johannesen PT. (2012). Behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualize audiometric loss. J. Assoc. Res. Otolaryngol. 13(4):485-504.
  21. Eustaquio-Martín A, LopezPoveda EA (2011). «Isoresponse versus isoinput estimates of cochlear filter tuning,» JARO-J. Assoc. Res. Otolaryngol. 12(3):281-299.
  22. Johannesen PT, Lopez-Poveda EA (2010). «Correspondence between behavioral and individually ‘optimized’ otoacoustic emission estimates of human cochlear input/output curves,» J. Acoust. Soc. Am. 127(6), 3602-3613.
  23. Lopez-Poveda EA, Johannesen PT (2009). «Otoacoustic emission theories and behavioral estimates of human basilar membrane motion are mutually consistent,» JARO-J. Assoc. Res. Otolaryngol. 10:511-523.
  24. Lopez-Poveda EA, Johannesen PT, Merchán MA. (2009). «Estimation of the degree of inner and outer hair cell dysfunction from distortion product otoacoustic emission input/output functions,» Audiological Medicine 7:22-28.
  25. Johannesen PT, Lopez-Poveda EA. (2008). «Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emission input/output functions.» J. Acoust. Soc. Am. 124(4), 2149-2163.
  26. Alves-Pinto A, Lopez-Poveda EA. (2008). «Psychophysical assessment of the level-dependent representation of high-frequency spectral notches in the peripheral auditory system,» J. Acoust. Soc. Am. 124(1), 409-421.
  27. Lopez-Poveda EA, Alves-Pinto A. (2008). «A variant temporal-masking-curve method for inferring peripheral auditory compression,» J. Acoust. Soc. Am. 123 (3), 1544-1554.
  28. Lopez-Poveda EA, Alves-Pinto A, Palmer AR, Eustaquio-Martin A. (2008). «Rate versus time representation of high-frequency spectral notches in the peripheral auditory system: A computational modeling study,» Neurocomputing 71/4-6, 693-703
  29. Lopez-Najera A, Lopez-Poveda EA, Meddis R. (2007). «Further studies on the dual-resonance nonlinear filter model of cochlear frequency selectivity: Responses to tones,» J. Acoust. Soc. Am. 122(4), 2124-2134.
  30. Lopez-Poveda, E. A., Barrios, L. F., Alves-Pinto, A. (2007). «Psychophysical estimates of level-dependent best-frequency shifts in the apical region of the human basilar membrane,» J. Acoust. Soc. Am. 121(6), 3646-3654.
  31. Lopez-Poveda, E. A., Eustaquio-Martín, A. (2006). «A biophysical model of the inner hair cell: The contribution of potassium current to peripheral compression,» JARO-J. Assoc. Res. Otolaryngol. 7(3), 218-235.
    Biophysical model of the inner hair cell code
  32. Lopez-Poveda, E. A. (2005). «Spectral processing by the peripheral auditory system: Facts and models.» Int. Rev. Neurobiology 70, 7-48.
  33. Merchán, MA, Aguilar, L, Lopez-Poveda, EA, Malmierca, MS. (2005). «Immunocytochemical and semiquantitative study on g-aminobutyric acid and glycine in the inferior colliculus of the rat,” Neuroscience 136. 907-925.
  34. Alves-Pinto, A., Lopez-Poveda, E.A. (2005). «Detection of high-frequency spectral notches as a function of level,» J. Acoust. Soc. Am. 118, 2458-2469.
  35. Wilson BS, Schatzer R, Lopez-Poveda EA, Sun X, Lawson DT, Wolford RD. (2005). «Two new directions in speech processor design for cochlear implants,»  Ear & Hearing, 26, 73S-81S.
  36. Alves-Pinto, A., Lopez-Poveda, E.A., and Palmer, A. R. (2005). «Auditory nerve encoding of high-frequency spectral information,» Lecture Notes in Computer Science 3561, 223-232.
  37. Lopez-Poveda, EA, Plack, CJ, Meddis, R, and Blanco, JL. (2005). «Cochlear compression between 500 and 8000 Hz in listeners with moderate sensorineural hearing loss,» Hearing Res. 205, 172-183.
  38. Lopez-Poveda, EA (2004). «Reply to Comment on «An approximate transfer function for the dual resonance nonlinear filter model of auditory frequency selectivity»,» J. Acoust. Soc. Am. 115 (5) Part 1: 1891-1891.
  39. Plack, CJ, Drga, V, and Lopez-Poveda, EA (2004). «Inferred basilar-membrane response functions for listeners with mild to moderate sensorineural hearing loss,» J. Acoust. Soc. Am. 115, 1684-1695.
  40. Aguilar, LA, Malmierca, MS, Coveña, R, Lopez-Poveda, EA, Tramu, G, and Merchán, M. (2004) “Immunocytochemical distribution of Met-enkephalin-Arg6-Gly7-Leu8 (Met-8) in the auditory system of the rat,” Hear. Res. 187, 111-121.
  41. Lopez-Poveda, EA. (2003) “An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity,” J. Acoust. Soc. Am. 114, 2112-2117.
  42. Malmierca, MS, Hernández, O, Falconi, A, Lopez-Poveda, EA, Merchán, M, and Rees, A. (2003). “The commissure of the inferior colliculus shapes frequency response areas in rat: an in vivo study using reversible blockade with microinjection of kynurenic acid,” Exp. Brain Res. 153, 522-529.
  43. Sumner, C, O’Mard, LPO, Lopez-Poveda, EA, and  Meddis, R (2003).  “A non-linear filter-bank model of the guinea-pig cochlear nerve” J. Acoust. Soc. Am. 113, 3264-3274.
  44. Lopez-Poveda, EA, Plack, CJ, and  Meddis, R. (2003).  “Cochlear nonlinearity between 500 and 8000 Hz in normal-hearing listeners,” J. Acoust. Soc. Am. 113, 951-960.
  45. Sumner, C, Lopez-Poveda, EA, O’Mard, LPO, and Meddis, R. (2003). «Adaptation in a revised model of the inner-hair cell J. Acoust. Soc. Am. 113, 893-901.
  46. Sumner, C, Lopez-Poveda, EA, O’Mard, LPO and Meddis, R.  (2002).  “A revised model of the inner hair cell and auditory nerve complex,» J. Acoust. Soc. Am. 111 (5): 2178-2188.
  47. Lopez-Poveda, EA, and Meddis, R. (2001).  «A human nonlinear cochlear filterbank,» J. Acoust. Soc. Am. 110 (6): 3107-3118.
  48. Meddis, R, O’Mard, LPO, and Lopez-Poveda, EA.  (2001).  «A computational algorithm for computing non-linear auditory frequency selectivity,» J. Acoust. Soc. Am. 109 (6): 2852-2861.
  49. Lopez-Poveda, EA, and Meddis, R.  (1996).  «A physical model of sound diffraction and reflections in the human concha,» J. Acoust. Soc. Am. 100(5): 3248-3259.